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Abstract—Distributed Denial-of-Service (DDoS) attacks are a critical threat to the Internet. However, the memoryless feature of the

Internet routing mechanisms makes it extremely hard to trace back to the source of these attacks. As a result, there is no effective and

efficient method to deal with this issue so far. In this paper, we propose a novel traceback method for DDoS attacks that is based on

entropy variations between normal and DDoS attack traffic, which is fundamentally different from commonly used packet marking

techniques. In comparison to the existing DDoS traceback methods, the proposed strategy possesses a number of advantages—it is

memory nonintensive, efficiently scalable, robust against packet pollution, and independent of attack traffic patterns. The results of

extensive experimental and simulation studies are presented to demonstrate the effectiveness and efficiency of the proposed method.

Our experiments show that accurate traceback is possible within 20 seconds (approximately) in a large-scale attack network with

thousands of zombies.

Index Terms—DDoS, IP traceback, entropy variation, flow.
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1 INTRODUCTION

IT is an extraordinary challenge to traceback the source of
Distributed Denial-of-Service (DDoS) attacks in the

Internet. In DDoS attacks, attackers generate a huge amount
of requests to victims through compromised computers
(zombies), with the aim of denying normal service or
degrading of the quality of services. It has been a major
threat to the Internet since year 2000, and a recent survey [1]
on the largest 70 Internet operators in the world demon-
strated that DDoS attacks are increasing dramatically, and
individual attacks are more strong and sophisticated.
Furthermore, the survey also found that the peak of
40 gigabit DDoS attacks nearly doubled in 2008 compared
with the previous year. The key reason behind this
phenomena is that the network security community does
not have effective and efficient traceback methods to locate
attackers as it is easy for attackers to disguise themselves by
taking advantages of the vulnerabilities of the World Wide
Web, such as the dynamic, stateless, and anonymous nature
of the Internet [2], [3]. IP traceback means the capability of
identifying the actual source of any packet sent across the
Internet. Because of the vulnerability of the original design
of the Internet, we may not be able to find the actual hackers
at present. In fact, IP traceback schemes are considered
successful if they can identify the zombies from which the

DDoS attack packets entered the Internet. Research on
DDoS detection [4], [5], [6], [7], [8], [9], mitigation [10], [11],
[12], and filtering [13], [14], [15], [16], [17], [18] has been
conducted pervasively. However, the efforts on IP traceback
are limited.

A number of IP traceback approaches have been

suggested to identify attackers [19], [20], and there are

two major methods for IP traceback, the probabilistic packet

marking (PPM) [21], [22], [23], [24] and the deterministic

packet marking (DPM) [25], [26], [27], [28]. Both of these

strategies require routers to inject marks into individual

packets. Moreover, the PPM strategy can only operate in a

local range of the Internet (ISP network), where the

defender has the authority to manage. However, this kind

of ISP networks is generally quite small, and we cannot

traceback to the attack sources located out of the ISP

network. The DPM strategy requires all the Internet routers

to be updated for packet marking. However, with only

25 spare bits available in as IP packet, the scalability of DPM

is a huge problem [22]. Moreover, the DPM mechanism

poses an extraordinary challenge on storage for packet

logging for routers [29]. Therefore, it is infeasible in practice

at present. Further, both PPM and DPM are vulnerable to

hacking [30], which is referred to as packet pollution.
IP traceback methods should be independent of packet

pollution and various attack patterns. In our previous work

[31], [32] on DDoS attack detection, we compared the packet

number distributions of packet flows, which are out of the

control of attackers once the attack is launched, and we

found that the similarity of attack flows is much higher than

the similarity among legitimate flows, e.g., flash crowds.

Entropy rate, the entropy growth rate as the length of a

stochastic sequence increases [33], was employed to find the

similarity between two flows on the entropy growth pattern

[31], and relative entropy, an abstract distance between two
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probabilistic mass distributions [33], was taken to measure
the instant difference between two flows [32].

In this paper, we propose a novel mechanism for IP
traceback using information theoretical parameters, and
there is no packet marking in the proposed strategy; we,
therefore, can avoid the inherited shortcomings of the
packet marking mechanisms. We categorize packets that are
passing through a router into flows, which are defined by
the upstream router where a packet came from, and the
destination address of the packet. During nonattack
periods, routers are required to observe and record entropy
variations of local flows. In this paper, we use flow entropy
variation or entropy variation interchangeably. Once a DDoS
attack has been identified, the victim initiates the following
pushback process to identify the locations of zombies: the
victim first identifies which of its upstream routers are in
the attack tree based on the flow entropy variations it has
accumulated, and then submits requests to the related
immediate upstream routers. The upstream routers identify
where the attack flows came from based on their local
entropy variations that they have monitored. Once the
immediate upstream routers have identified the attack
flows, they will forward the requests to their immediate
upstream routers, respectively, to identify the attacker
sources further; this procedure is repeated in a parallel
and distributed fashion until it reaches the attack source(s)
or the discrimination limit between attack flows and
legitimate flows is satisfied.

Our analysis, experiments, and simulations demonstrate
that the proposed traceback mechanism is effective and
efficient compared with the existing methods [23], [34]. In
particular, it possesses the following advantages:

. The proposed strategy is fundamentally different
from the existing PPM or DPM traceback mechan-
isms, and it outperforms the available PPM and
DPM methods. Because of this essential change, the
proposed strategy overcomes the inherited draw-
backs of packet marking methods, such as limited
scalability, huge demands on storage space, and
vulnerability to packet pollutions.

. The implementation of the proposed method brings
no modifications on current routing software. Both
PPM and DPM require update on the existing
routing software, which is extremely hard to achieve
on the Internet. On the other hand, our proposed
method can work independently as an additional
module on routers for monitoring and recording
flow information, and communicating with its
upstream and downstream routers when the push-
back procedure is carried out.

. The proposed method will be effective for future
packet flooding DDoS attacks because it is indepen-
dent of traffic patterns. Some previous works [23]
depend heavily on traffic patterns to conduct their
traceback. For example, they expected that traffic
patterns obey Poisson distribution or Normal dis-
tribution. However, traffic patterns have no impact
on the proposed scheme; therefore, we can deal with
any complicated attack patterns, even legitimate
traffic pattern mimicking attacks.

. The proposed method can archive real-time trace-
back to attackers. Once the short-term flow informa-
tion is in place at routers, and the victim notices that
it is under attack, it will start the traceback
procedure. The workload of traceback is distributed,
and the overall traceback time mainly depends on the
network delays between the victim and the attackers.

The rest of the paper is organized as follows: Section 2
describes the background of DDoS attacks and the related
work which has been done so far on IP traceback. Our
entropy variation-based IP traceback model is proposed in
Section 3. Detailed analysis of the proposed scheme is
conducted in Section 4. The related algorithms are designed
in Section 5. Section 6 focuses on the performance analysis
for every aspect of the proposed mechanism with Section 7
summarizing the paper and discussing future work.

2 BACKGROUND AND RELATED WORK

2.1 Background of DDoS Attacks

DDoS attacks are targeted at exhausting the victim’s
resources, such as network bandwidth, computing power,
and operating system data structures. To launch a DDoS
attack, the attacker(s) first establishes a network of compu-
ters that will be used to generate the huge volume of traffic
needed to deny services to legitimate users of the victim. To
create this attack network, attackers discover vulnerable
hosts on the network. Vulnerable hosts are those that are
either running no antivirus or out-of-date antivirus soft-
ware, or those that have not been properly patched. These
are exploited by the attackers who use the vulnerability to
gain access to these hosts. The next step for the attacker is to
install new programs (known as attack tools) on the
compromised hosts of the attack network. The hosts running
these attack tools are known as zombies, and they can be used
to carry out any attack under the control of the attacker.
Numerous zombies together form an army or botnet [3], [35].

There are two categories of DDoS attacks, typical DDoS
attacks and Distributed Reflection Denial-of-Service
(DRDoS) attacks. In a typical DDoS attack, the master
computer orders the zombies to run the attack tools to send
huge volume of packets to the victim, to exhaust the
victim’s resources. Unlike the typical DDoS attacks, the
army of a DRDoS attack consists of master zombies, slave
zombies, and reflectors. The difference in this type of attack
is that slave zombies are led by master zombies to send a
stream of packets with the victim’s IP address as the source
IP address to other uninfected machines (known as
reflectors), exhorting these machines to connect with the
victim. Then the reflectors send the victim a great volume of
traffic, as a reply to its exhortation for the opening of a new
connection, because they believe that the victim was the
host that asked for it.

Understanding the features of DDoS attack is critical for
effective attack traceback. However, we have limited real
data sets about DDoS attacks. The current knowledge of
DDoS attack can be classified as follows: inference based on
partial information [34], real network emulation [35] or
simulations [36], and real attack and defence between two
cooperate research groups [37].
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2.2 Related Work of IP Traceback

It is obvious that hunting down the attackers (zombies), and
further to the hackers, is essential in solving the DDoS
attack challenge. The summary of the existing DDoS
traceback methods can be found in [38] and [39]. In general,
the traceback strategies are based on packet marking.

Packet marking methods include the PPM and the DPM.
The PPM mechanism tries to mark packets with the router’s
IP address information by probability on the local router, and
the victim can reconstruct the paths that the attack packets
went through. The PPM method is vulnerable to attackers, as
pointed out in [30], as attackers can send spoofed marking
information to the victim to mislead the victim. The accuracy
of PPM is another problem because the marked messages by
the routers who are closer to the leaves (which means far
away from the victim) could be overwritten by the down-
stream routers on the attack tree [21]. At the same time, most
of the PPM algorithms suffer from the storage space problem
to store large amount of marked packets for reconstructing
the attack tree [22], [24]. Moreover, PPM requires all the
Internet routers to be involved in marking.

Based on the PPM mechanism, Law et al. tried to
traceback the attackers using traffic rates of packets, which
were targeted on the victim [23]. The model bears a very
strong assumption: the traffic pattern has to obey the Poisson
distribution, which is not always true in the Internet.
Moreover, it inherits the disadvantages of the PPM mechan-
ism: large amount of marked packets are expected to
reconstruct the attack diagram, centralized processing on
the victim, and it is easy be fooled by attackers using packet
pollution.

The deterministic packet marking mechanism tries to
mark the spare space of a packet with the packet’s initial
router’s information, e.g., IP address. Therefore, the receiver
can identify the source location of the packets once it has
sufficient information of the marks. The major problem of
DPM is that it involves modifications of the current routing
software, and it may require very large amount of marks for
packet reconstruction. Moreover, similar to PPM, the DPM
mechanism cannot avoid pollution from attackers.

Savage et al. [24] first introduced the probability-based
packet marking method, node appending, which appends
each node’s address to the end of the packet as it travels
from the attack source to the victim. Obviously, it is
infeasible when the path is long or there is insufficient
unused space in the original packet. The authors proposed
the node sampling algorithm, which records the router
address to the packet with probability, p, on the routers of
the attack path. Then, the probability of a packet marked
by a router d that hops away from the victim is pð1� pÞd�1.
Based on the number of marked packets, we can reconstruct
the attack path. However, it requires large number of
packets to improve the accuracy of the attack path
reconstruction. Therefore, an edge sampling algorithm
was proposed to mark the start router address and end
router address of an attack link and the distance between
the two ends. The edge sampling algorithm fixed the
problems of the node sampling algorithm to some extent.

Based on the PPM mechanism, in [23], the traffic that
targeted the victim was measured to construct the attack

diagram, and then identified where the attackers were
located. They focused on the traffic flows, which end at the
victim, and therefore, there was a tree which was rooted at
the victim. For a router on the attack tree, the outgoing flow
included two parts: the locally generated flows and the
transit flows from the upstream router(s) of the attack tree. If
X1 and X2 are two flows on the attack tree, and X1 is the
upstream flow of X2, then Pr ob½X1 > x� � Pr ob½X2 > x�; 8x.
The victim will collect all the marked packets from the
routers and reconstruct the attack tree based on the traffic
rates of the different routers. This traceback method heavily
depends on the queuing model, and it requires the traffic
flows to obey specific patterns, e.g., the Poisson distribution.

In [22], the randomize-and-link approach to implement IP
traceback based on the probabilistic packet marking mechan-
ism was proposed. The algorithm targets two aspects: to
reconstruct the marks from the marker efficiently and to
make the PPM more secure against hackers’ pollution. The
idea is to have every router X to fragment its unique message
Mx (e.g., IP address) into several pieces,M0;M1; . . .Ml. At the
same time, the router calculates the checksum C ¼ CðMxÞ,
named as cord. The router assembles the mark as bi, and
injects bi randomly into the unused IPv4 packet header (say,
N bits, which is 25 bits in the paper: 16 bits of fragmentation
ID, 1 bit of the fragmentation index, and 8 bits of service type,
all of them are used rarely in a common IPv4 packet). bi
includes three parts: an index of the pieces (log2 l bits), a large
checksum cordC ¼ CðMxÞ(N � log2 l� jMijbits), and a piece
of Mi; i ¼ 0; 1; . . . ; l (jMij bits). The cord is quite large, for
example, 14 out of 25 bits, therefore, we can treat the cord as a
random number, which is hard for hackers to predict. The
victim can reconstruct the message efficiently by checking
the cord and the index sequence.

Yaar et al. [40] studied the marking technique to improve
the PPM mechanism. They broke the 16-bits marking space
into three parts: 1 bit for distance, 2 bits for fragmentation
index, and a hash fragmentation of 13 bits. By this
modification, the proposed FIT algorithm can traceback
the attack paths with high probability after receiving only
tens of packets. The FIT algorithm also performed well even
in the presence of legacy routers and it is a scalable
algorithm for thousands of attack sources.

Snoeren et al. proposed a method by logging packets or
digests of packets at routers [41], [42]. The packets are
digested using bloom filter at all the routers. Based on these
logged information, the victim can traceback the leaves on
an attack tree. The methods can even traceback a single
packet. However, it also places a significant strain on the
storage capability of intermediate routers.

In [21], two hybrid schemes that combine the packet
marking and packet logging method to traceback the attack
sources are proposed—Distributed Link-List Traceback
(DLLT) and the Probabilistic Pipelined Packet Marking
(PPPM). The first one preserves the marking information at
intermediate routers in a specific way so that it can be
collected using a link-list-based approach. The second
algorithm targets propagating the IP addresses of the
routers that were involved in marking certain packets by
loading them into packets going to the same destination,
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therefore, preserving these addresses while avoiding the
need for long-term storage at the intermediate routers.

Different from PPM, Dean et al. [26] proposed a
deterministic packet marking strategy for IP traceback. Every
ingress router writes its own IP address into the outgoing IP
packet header, and there is no more marking for the packet.
They used an algebraic approach, originally developed for
coding theory and learning theory, for encoding traceback
information. Their idea is that for any polynomial fðxÞ of
degree d in the prime field GF ðpÞ, fðxÞ can be recovered
given fðxÞ evaluated at dþ 1 unique points.

Belenky and Ansari [25] noticed that the PPM mechan-
ism can only solve large flooding attacks, and it is not
applicable for attacks consisted of a small number of
packets. Moreover, PPM is vulnerable if hackers inject
marked packets into the network. Therefore, the paper
proposed a deterministic packet marking method for IP
traceback. The basic idea is that at the initial router for an
information source, the router embeds its IP address into
the packet by chopping the router’s IP into two segments
with 17 bits each (16 bits for half of the IP address and 1 bit
works as index). As a result, the victim can trace which
router the packets came from.

Jin and Yang [27] improved the ID coding of the
deterministic packet marking scheme using redundant
decomposition of the initial router IP address. For an IP
address, they divided them into three redundant segments,
0-13 bits, 9-22 bits, and 18-31 bits, and then five different
hash functions are applied on the three segments to create
five results. The resulting eight segments are recorded in
the outgoing packets randomly. The victim can reassemble
the source router IP using the packets it has received.

3 SYSTEM MODELING FOR IP TRACEBACK ON

ENTROPY VARIATIONS

3.1 A Sample Network with DDoS Attacks

In order to clearly describe our traceback mechanism, we
use Fig. 1 as a sample network with DDoS attacks to
demonstrate our traceback strategy.

In a DDoS attack scenario, as shown in Fig. 1, the flows
with destination as the victim include legitimate flows, such

as f3, and a combination of attack flows and legitimate
flows, such as f1 and f2. Compared with nonattack cases,
the volumes of some flows increase significantly in a very
short time period in DDoS attack cases. Observers at routers
R1, R4, R5, and V will notice the dramatic changes;
however, the routers who are not in the attack paths, such
as R2 and R3, will not be able to sense the variations.
Therefore, once the victim realizes an ongoing attack, it can
pushback to the LANs, which caused the changes based on
the information of flow entropy variations, and therefore,
we can identify the locations of attackers.

The traceback can be done in a parallel and distributed
fashion in our proposed scheme. In Fig. 1, based on its
knowledge of entropy variations, the victim knows that
attackers are somewhere behind router R1, and no attackers
are behind router R2. Then the traceback request is
delivered to router R1. Similar to the victim, router R1

knows that there are two groups of attackers, one group is
behind the link to LAN0 and another group is behind the
link to LAN1. Then the traceback requests are further
delivered to the edge routers of LAN0 and LAN1, respec-
tively. Based on entropy variation information of router R3,
the edge router of LAN0 can infer that the attackers are
located in the local area network, LAN0. Similarly, the edge
router of LAN1 finds that there are attackers in LAN1;
furthermore, there are attackers behind router R4. The
traceback request is then further passed to the upstream
routers, until we locate the attackers in LAN5.

3.2 System Modeling

In this paper, we categorize the packets that are passing
through a router into flows. A flow is defined by a pair—the
upstream router where the packet came from, and the
destination address of the packet. Entropy is an information-
theoretic concept, which is a measure of randomness. We
employ entropy variation in this paper to measure changes of
randomness of flows at a router for a given time interval. We
notice that entropy variation is only one of the possible
metrics. Chen and Hwang used a statistical feature, change-
point of flows, to identify the abnormality of DDoS attacks
[6]; however, attackers could cheat this feature by increasing
attack strength slowly. We can also employ other statistic
metrics to measure the randomness, such as standard
variation or high-order moments of flows. We choose
entropy variation rather than others in this paper because
of the low computing workload for entropy variations.

First, let us have a close investigation on the flows of a
router, as shown in Fig. 2. Generally, a router knows its local
topology , e.g., its upstream routers, the local area network
attached to the router, and the downstream routers.

We name the router that we are investigating now as a local
router. In the rest of the paper, we use I as the set of positive
integers, and R as the set of real numbers. We denote a flow on
a local router by <ui; dj; t>; i; j 2 I; t 2 R, where ui is an
upstream router of a local router Ri, dj is the destination
address of a group of packets that are passing through the
local router Ri, and t is the current time stamp. For example,
the local router Ri in Fig. 2 has two different incoming
flows—the ones from the upstream routers Rj and Rk,
respectively. We name this kind of flows as transit flows.
Another type of incoming flows of the local router Ri is
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generated at the local area network; we call these local flows,
and we use L to represent the local flows. We name all the
incoming flows as input flows, and all the flows leaving router
Ri are named as output flows. We denote ui; i 2 I as the
immediate upstream routers of the local router Ri, and set U
as the set of incoming flows of router Ri. Therefore, U ¼
fui; i 2 Ig þ fLg. We use a setD ¼ fdi; i 2 Ig to represent the
destinations of the packets that are passing through the local
router Ri. If v is the victim router, then v 2 D. Therefore, a
flow at a local router can be defined as follows:

fijðui; djÞ ¼ f<ui; dj; t>jui 2 U; dj 2 D; i; j 2 Ig: ð1Þ

We denote jfijðui; dj; tÞj as the count number of packets of
the flow fij at time t. For a given time interval �T , we
define the variation of the number of packets for a given
flow as follows:

Nijðui; dj; tþ�T Þ ¼ jfijðui; dj; tþ�T Þj � jfijðui; dj; tÞj: ð2Þ

If we set jfijðui; dj; tÞj ¼ 0, then Nijðui; dj; tþ�T Þ is the
number of packets of flow fij, which went through the local
router during the time interval �T . In order to make the
presentation tidy, we useNijðui; djÞ to representNijðui; dj; tþ
�T Þ in the rest of this paper.

Based on the large number theorem, we have the
probability of each flow at a local router as follows:

pijðui; djÞ ¼
Nijðui; djÞP1

i¼1

P1
j¼1 Nijðui; djÞ

; ð3Þ

where pijðui; djÞ gives the probability of the flow fij over all
the flows on the local router, and

P1
i¼1

P1
j¼1 pijðui; djÞ ¼ 1.

Let F be the random variable of the number of flows
during the time interval �T on a local router, therefore, we
define the entropy [33] of flows for the local router as follows:

HðF Þ ¼ �
X
i;j

pijðui; djÞ log pijðui; djÞ: ð4Þ

In order to differentiate from the original definition of
entropy, we call H(F) as entropy variation in this paper,
which measures the variations of randomness of flows on a
given local router.

4 TRACEBACK MODEL ANALYSIS

In this section, we first compare the proposed model with
the existing proposals in order to show the advantages of
the proposed mechanism. We then analyze the proposed
entropy variation-based traceback model in detail. The
features of a stand-alone router are analyzed first, followed
by the investigation on the properties of the whole attack
tree of a DDoS attack.

4.1 Comparison of Traceback Models

In order to show the advantages of the proposed mechan-
ism, we compare our proposed method with the represen-
tatives of DPM [42] and PPM [22] algorithms. The settings
and network environment for the proposed algorithm are
the same as that of DPM [42] and PPM [22], respectively, in
the comparisons. We take [42] as the representative for
DPM mechanism because it is a typical research instance for
that category. It chooses one source (attacker) and one
destination randomly from a tier-one ISP made up of
roughly 70 backbone routers with links ranging from T1 to
OC-3. The routers between the source and the destination
perform packet digests using a bloom filter, and the average
packet size is 400 bytes as indicated in the paper. Routers
process more than 20 Mpkts/sec (roughly 2 OC-192 links, or
8 OC-48s), and there are around 1,000 flows at a router. We
use [22] as an instance for the PPM strategy, which is
treated as the most scalable PPM algorithm, and we
calculate the related storage space and traceback time as
the parameters provided by the paper, such as sampling
probability p ¼ 0:05. Both of these two schemes are used as
the benchmark in [43] as well. The comparisons are listed in
Table 1, and it shows clearly that the proposed mechanism
outperforms the other two mechanisms in terms of
scalability (the size of attack network that we can handle),
storage (the storage space that we need on routers or
victims to conduct IP traceback), traceback time (the overall
time we need from the start time until the end of tracing
process), and the operation workload (the operations on
possible routers or victims).

There are some improvements for DPM by distributing
logging information among routers [29] and PPM by
reducing the probability of sampling [43]. However, there
are no fundamental changes, and the improvements are
limited compared to our proposed methodology.

4.2 Analysis of Entropy-Variation-Based Traceback
Model

We present our assumptions below in order to make our
analysis simple and clear. We assume the following:

1. There is no extraordinary change of network traffic
in a very short time interval (e.g., at the level of
seconds) for non-DDoS attack cases. It is true that the
network traffic for a router may dynamically change
a lot from peak to off-peak service times. However,
this kind of change lasts for a relatively long time
interval, e.g., at least at the level of minutes. If we
break down these changes into seconds, the change
of traffic is quite smooth in our context.

2. The number of attack packets is at least an order of
magnitude higher than that of normal flows. During
a DDoS flooding attack, the number of attack packets
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increases dramatically, and the attack packets are
generated by thousands of zombies or bots [3], [34].
Consequently, the number of attack packets is much
higher than that of legitimate flows. Therefore, this
assumption is reasonable. Of course, for the non-
flooding attacks, this may not hold, and in this paper,
we focus on the majority of the attack tools—flooding
attacks. Furthermore, this is the lower bound that we
can discriminate attack flows from the legitimate
flows (see the experiments in Section 6).

3. Only one DDoS attack is ongoing at a given time. It
could be true that a number of attacks are ongoing
concurrently in the Internet, the attack paths may
overlap as well, but we only consider the one attack
scenario to make it simple and clear.

4. The number of flows for a given router is stable at
both the attack cases and nonattack cases.

For a local router, suppose that the number of flows is N ,
and the probability distribution is Pfp1; p2; . . . ; pNg. We can
simplify the expression of entropy of (4) as follows:

HðF Þ ¼ Hðp1; p2; . . . ; pNÞ ¼ �
XN
i¼1

pi log pi: ð5Þ

Based on the characteristics of the entropy function [33], we

obtain the upper bound and lower bound of H(F) as follows:

0 � HðF Þ � logN: ð6Þ

We reach the lower bound when pi ¼ 1; 1 � i � N ,
pk ¼ 0; k ¼ 1; 2; . . . ; N , and k 6¼ i; we have the upper bound
when p1 ¼ p2 ¼ � � � ¼ PN . Based on our definition of the
random variable of flows, we have the following special
cases to reach the lower bound and the upper bound,
respectively: when there is only one flow alive during the
sampling time interval, and there are no packets going
through the local router for the other flows, HðF Þ ¼ 0; when
the number of packets for each flow is the same among all
the flows at a local router, then we have HðF Þ ¼ logN .

We divide our timeline into two segments for the
following investigation: before DDoS attack and under
DDoS attack. The local router’s entropy variation is, there-
fore, denoted by H�ðF Þ and HþðF Þ, respectively. Let � be a
reasonable threshold, and C be the mean of H�ðF Þ, and the
standard variation of H�ðF Þ be �. We know that H�ðF Þ is
quite stable for a long time period. We justify our threshold �
to make the following equation holds with high probability:

jH�ðF Þ � Cj � �: ð7Þ

In order to make the mean C and standard variation �

adaptive to the network traffic variations, let

C½t� ¼
Xn
i¼1

�i � C½t� i�;
Xn
i¼1

�i ¼ 1; ð8Þ

�½t� ¼
Xn
i¼1

�i � �½t� i�;
Xn
i¼1

�i ¼ 1; ð9Þ

where C[t] represents the current mean, C[t� i] is the mean
of the ith sample instance in the near past, and �i; i ¼
1; 2; . . . ; n are the weights for the n past samples, respec-
tively. In order to reflect the nearest changes, let
�i > �j for i < j; i; j 2 I. The values of �iði ¼ 1; 2; . . . ; nÞ
are fixed and could be decided by the experiments of
nonattack cases. The same for �½t�, �½t� i� and �i; i ¼
1; 2; . . . ; n, respectively. The evolutions will be suspended
when a DDoS attack is ongoing.

If an attack flow is going through a local router, then the
following equation holds with high probability:

jHþðF Þ � Cj > �: ð10Þ

Moreover, we know that the reason behind this is that the
packet numbers of flows <ui; v>; ui 2 U increase signifi-
cantly. In order to find the immediate sources of the attack
flows from the upstream routers, we sort the flows
<ui; v>; ui 2 U in terms of number of packets of a given
attack flow, Nivðui; vÞ. We calculate the entropy variation
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TABLE 1
The Comparison of the Entropy Variation Mechanisms against DPM and PPM

(with the Same Settings and Network Environment, Respectively)



reiteratively by taking the suspicious flows out starting with
the flow which has the greatest packet number, until the
difference between the entropy of the remaining flows and
the mean is less than or equal to the threshold, �. In other
words, the process stops when the following equation holds:

jHþðFnmaxðf<ui; v>gÞ � Cj � �; ð11Þ

where Fnmaxðf<ui; v>g means taking the maximum
element from set f<ui; v>g from set F . Then the subset
fuig � U , which includes the upstream routers that we have
taken out before (11) holds, is the set of suspicious
immediate sources of the DDoS attack. Then the traceback
requests are further forwarded to the elements of set fuig,
respectively. The traceback processing terminates under the
following conditions:

L ¼ maxf<ui; v>g;
jHþðFnLÞ � Cj � �:

�
ð12Þ

Then L, the flows of the local area network, is the attack
source of that branch on the attack tree.

The threshold � is important for us to make the decision,
and it also introduces possible false positive and false
negative. Suppose that � is the true value of the threshold,
and we have 0 � �1 � � � �2 <1. We denote the prob-
ability density function as a continuous function fðxÞ, then
the probability of false positive and false negative can be
expressed as follows:

PFP ðx; �; �1Þ ¼
Z ��1

��
fðxÞdxþ

Z �

�1

fðxÞdx; ð13Þ

PFNðx; �; �2Þ ¼
Z ��
��2

fðxÞdxþ
Z �2

�

fðxÞdx; ð14Þ

where fðxÞ could be Gaussian distribution in practice.
Equation (13) gives the probability of false positive when
the chosen threshold �1 is less than the true value �; while
(14) gives the probability of false negative when the chosen
threshold �2 is greater than the true value �.

For a nonattack case, the number of packets of each flow
is stable as we assumed; therefore, the entropy variation
HðF Þ is stable with minor fluctuations, namely (7) holds
with high probability. Our traceback procedure starts when
a DDoS attack alarm has been raised. We now investigate
the features of the entropy variation when a DDoS attack is
ongoing.

Lemma 1. Compared with the nonattack scenario, the upper
bound of entropy variation drops when DDoS attack flows are
passing through a local router.

Proof. Based on (6), we know that entropy variation reaches
the maximum, logN, when the distribution is even, namely
p1 ¼ p2 ¼ � � � ¼ PN , and it reaches the minimum, 0, when
the distribution is extremely uneven, say, pi ¼ 1; 1 �
i � N , pk ¼ 0; k ¼ 1; 2; . . . ; N , and k 6¼ i. We also know
that entropy is a monotonic function [33]. Therefore, it is
clear that when a DDoS attack occurs, the distribution
moves toward the extreme uneven point; as a result, the
upper bound of the entropy variation drops. tu

Theorem 1. Compared with the nonattack situation, the entropy
variation of a local router drops dramatically when attack

flows are passing through the local router, in other words,
H�ðF Þ >> HþðF Þ.

Proof. Let fðxÞ ¼ x logx; x � 0. We know that f(x) is a
monotonically increasing convex function. Therefore,
�fðxÞ ¼ �x logx; x � 0, is a monotonically decreasing
concave function. Let X be the random variable for the
flow distributions. Applying Jensen’s inequality [33] to
fðXÞ, we have EfðXÞ � fðEXÞ, and further �EfðXÞ �
�fðEXÞ holds. tu

LetP ðXÞ ¼ fp1; p2; . . . ; pNgbe the distribution of flows at a
local router, P ðX0Þ ¼ fp0

1; p
0
2; . . . ; p0

Ng be the distribution for
the nonattack case, and P ðX1Þ ¼ fp1

1; p
1
2; . . . ; p1

Ng be the
distribution when attack flows are passing through the local
router. As mentioned at the beginning of this section, we
suppose that the variation of the nonattack flows remain at
the same level. Let pi; 1 � i � N represent the instance of the
attack flow, then p0

i << p1
i . We further haveEX0 << EX1 and

�fðEX0Þ >> �fðEX1Þ. Therefore, �EfðX0Þ >>� EfðX1Þ,
specifically �

PN
i¼1 p

0
i log p0

i >> �
PN

i¼1 p
1
i log p1

i . Hence, the
result HðX0Þ >> HðX1Þ, in other words, H�ðF Þ >> HþðF Þ.

So far, we have analyzed the characteristics of a local
router with and without DDoS attacks. It is also important
to have a deep understanding of the changing patterns of
entropy variation among routers on an attack tree. We use
the network in Fig. 3 as a sample for this study.

Lemma 2. For a local router on an attack path, the entropy
variation of the output flows is not greater than the summation
of the entropy variation of the incoming flows.

Proof. For a router in Fig. 3, we assume that there are n
incoming flows, f1; f2; . . . ; fn (n upstream routers pump
packets to one router). For any incoming flow fi, it has ni
subflows, f1

i ; f
2
i ; . . . ; fnii (flows share one upstream router

with different destinations), with the probability dis-
tribution of p1

i ; p
2
i ; . . . ; pnii , respectively. The entropy

variation of flow fi is given by the following equation:

HðfiÞ ¼ H
�
p1
i ; p

2
i ; . . . ; pnii

�
: ð15Þ

tu

Without loss of generality, let f1
i be the attack flow. Then

the output flow entropy variation is Hð
Pn

i¼1 fiÞ. Based on
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Fig. 3. A sample attack tree near the victim.



Jensen’s inequality, Ef � fðEXÞ when f is convex, and the
fact that H(p) is convex implies that

Xn
i¼1

HðfiÞ � H
Xn
i¼1

fi

 !
: ð16Þ

Theorem 2 (Entropy variation convergence of attack

flows). The entropy variation drops when a local router is
closer to the victim, and vice versa.

This theorem can be easily concluded from lemma 2 in
an attack tree.

With the progress of the traceback procedure, we have
more and more information about the ongoing attack. We
can, therefore, estimate the number of attackers, which are
going to be traced and the distances between attackers and
the current local router. We use Fig. 4 as a sample attack
branch for this investigation.

In Fig. 4, the traceback request has been submitted to
router R4, and from the diagram, we know that four
attackers, A1, A2, A3, and A4, are to be traced, and the length
of the most far away zombies is three hops away.
Unfortunately, this knowledge is not available to our
traceback algorithm. However, we can estimate the number
of zombies that are located behind router R4, and the
maximum of the length to the most far away zombie(s) with
the knowledge of the attack that we have collected so far on
the way to router R4.

Theorem 3 (Estimation on traceback distance and number

of zombies). Based on the partial information of the attack
that the traceback algorithm has accumulated, we can estimate
the number of zombies to be traced and the maximum length to
the most far away zombie(s).

Suppose that the zombies are distributed evenly, the
attack tree is a d-branch tree, and we have knowledge of k
attack packet rates, a1; a2; . . . ; ak when we reach the current
router, say, router R4 in Fig. 4. Moreover, we also know the
output attack packet rate of the current local router, N . We
use n to denote the number of zombies to be traced.

We use pi; 1 � i � k to represent the distribution of
ti; 1 � i � k, then the mean of a1; a2; . . . ; ak is close enough
to the mean of all zombies in the whole attack tree if k is
sufficient enough, in this case, a ¼

Pk
i¼1 pi � ai. Therefore, in

terms of statistics, we can infer the number of attackers to be
traced in the branch as (17)

n � N
a
¼ NPk

i¼1 pi � ai
: ð17Þ

For a d-branch tree (d ¼ 2 in Fig. 4), we assume that the
distance from the current node (the local router) to the n
leaves (zombies) is given as l1; l2; . . . ; ln, respectively. From
the Kraft inequality [33], the following equation holds:

Xn
i¼1

d�li � 1: ð18Þ

Let lmax ¼ maxðl1; l2; . . . ; lnÞ. Based on (17) and inequality
(18), we obtain

lmax �
logn

log d
� logN � log

Pk
i¼1 pi � ai

log d
: ð19Þ

From (17) and inequality (19), we can estimate the number
of zombies to be traced and the maximum length to reach
the most far away zombie(s), respectively.

Theorem 4 (Termination condition for traceback). There are
no attackers at the upstream routers if a local router’s entropy
variation is reasonable, namely jHþðF Þ � Cj � � holds with
high probability.

We know that jH�ðF Þ � Cj � � holds with high prob-
ability for a local router before a DDoS attack occurs. When
a DDoS attack is ongoing, however, there are no DDoS
attack packets passing through the local router. Then
H�ðF Þ � HþðF Þ, and therefore, jHþðF Þ � Cj � � holds with
high probability.

Theorem 4 is quite important for the traceback algorithm
to make a decision on when to terminate the pushback
procedure. Of course, if the attack flows are similar to the
legitimate flows in terms of packet rate, say, within 10 times
range, the entropy variation cannot discriminate them.
However, we are close enough to the zombies in this case.

Further, the total time for traceback, the period from
starting traceback procedure to zombies are identified, is a
critical parameter for any traceback algorithms. There are
two reasons why this parameter is important. Moore et al.
[34] indicated that the average attack duration is around 5-
10 minutes for typical DDoS attacks, therefore, an effective
traceback procedure has to be completed within this time
limitation, say, 5 minutes; another reason is that we would
be able to reduce the damage caused by DDoS attack if we
could identify the zombies earlier, and therefore, block
them earlier.

Suppose that the attack network is a d-branch tree, the
height of the tree is n, and there are totally N zombies.
Based on [34], the maximum hops between two end points
at the Internet are 31. In [23], the experiments were
conducted with the maximum hops as 23. However, we
take 31 hops as the maximum hops between two end points
on the Internet. Suppose that the zombies are distributed
evenly in the attack tree. Then,

Xn
i¼0

di � N; 1 � n � 31: ð20Þ

Let the normal delay between two routers in nonattack
scenario be t, which is at a millisecond level usually, and the
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Fig. 4. A sample traceback branch in an attack tree.



delay on a link be proportional to the number of packets

passing through the link. Then, the traceback time can be

calculated as follows:

T ¼ t	
Xn
i¼0

ð31� nÞ 	 di; 1 � n � 30: ð21Þ

Combining (20) and (21), we can calculate the total

traceback time to the most far away zombies using the

proposed traceback method. The numerical results will be

shown in Section 6.

5 ALGORITHMS FOR THE IP TRACEBACK MODEL

In this section, we design the related algorithms according

to our previous modeling and analysis. There are two

algorithms in the proposed traceback suite, the local flow

monitoring algorithm and the IP traceback algorithm.
The local flow monitoring algorithm is running at the

nonattack period, accumulating information from normal

network flows, and progressing the mean and the standard

variation of flows. The progressing suspends when a DDoS

attack is ongoing. The local flow monitoring algorithm is

shown as Fig. 5.
Once a DDoS attack has been confirmed by any of the

existing DDoS detection algorithms, then the victim starts

the IP traceback algorithm, which is shown as Fig. 6.
The IP traceback algorithm is installed at routers. It is

initiated by the victim, and at the upstream routers, it is

triggered by the IP traceback requests from the victim or the

downstream routers which are on the attack path.
The proposed algorithms are independent from the

current routing software, they can work as independent

modules at routers. As a result, we do not need to change
the current routing software.

6 PERFORMANCE EVALUATIONS

In this section, we evaluate the effectiveness and efficiency
of the proposed entropy variation based on IP traceback
mechanism. Our first task is to show that the flow entropy
variation is stable for nonattack cases, and find out the
fluctuations for normal situations; the second task is to
demonstrate the relationship between the drop of flow
entropy variation and the increase of attack strength, so that
we can identify the threshold for identifying attack sources;
we further simulate the whole attack tree for traceback, and
evaluate the total traceback time.

As mentioned in Section 2, the network security commu-
nity lacks suitable data sets of real large-scale DDoS attacks,
and it is even harder to find suitable data sets for our
algorithms. Consequently, in order to evaluate our scheme,
we have carefully conducted extensive simulations and real
case observations. The simulation settings are arranged
according to Fig. 1. We set the attack tree as a binary tree or
three-branch tree, respectively, and zombies are distributed
in the attack tree uniformly. We note that, our entropy
variation traceback mechanism is independent from the
topology of attack network and it is also independent from
the network topology of victims. We use the essential DDoS
attack parameters as presented in [34] in our simulations,
such as, 5-10 minutes attack duration, 10,000 packets per
second of attack flows. The performance evaluation in-
cluded two parts—the first one focussed on the entropy
variation monitoring at a local router; and the second part
was to demonstrate the effectiveness of DDoS attacker
traceback and the overall traceback time.
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Fig. 5. The algorithm for local flow traffic monitoring.
Fig. 6. The IP traceback algorithm on a router.



First, we observe the stability of entropy variations at a
local router during nonattack periods. We examine two
kinds of flows, the Poisson distribution flows and the
Normal distribution flows. The Poisson distribution is
treated as the pattern of Internet traffic by most researchers,
and the combination of Normal distributions with different
parameters can be used to approximate most distributions.
For confidence level in the simulations, we take � ¼ 0:05, so
that the confidence level is 1� � ¼ 95%, and the corre-
sponding confidence interval is ½�0:196;þ0:196�. We first
investigated the impact on the entropy variation against the
number of flows, and the results are shown in Fig. 7.

Fig. 7 indicates that the entropy variation increases
smoothly against the increase of the number of flows which
are passing through the local router. It also shows the
similarity of the entropy variation patterns for the two
distributions, and the difference of the variation entropies is
quite limited.

In order to confirm this in reality, we conducted a real case
study by collecting network flow information from a gateway
server of our campus [44] over one week, when there is no
DDoS attack. We examine the real data set to observe the
patterns of flow entropy variation against number of flows
for each day in that week. There were thousands of flows per
day from the collected data set. We sorted the flows in
different ways: by traffic volume per connection and by the
number of connections for a given time interval, and
considered the top 1,000 flows as input for the experiments.
The results are listed in Figs. 8 and 9, respectively.

In Fig. 8, we increase the number of flows (the flows are
sorted by traffic volume per connection) and check the
variation of flow entropy variation on the gateway server.
In Fig. 9, we sort the flows by the number of connections for
different clients. We notice that the entropy variation is
steady and smooth as we found in the simulation.

We therefore can conclude that the entropy variation is
stable; moreover, it is independent from specific distribu-
tion patterns as shown in Fig. 7. This is one of the
foundations for our proposed algorithms.

Furthermore, it is important to know the stability of the
entropy variation against the fluctuations of flows in
nonattack cases. We conducted two simulations for this
purpose: we make the mean of flows as 100 packets per

time unit, and the standard variations (std) of the flows are

25 and 50, respectively. We observe the changes of the

entropy variation against the number of flows. The results

are shown in Fig. 10. It indicates that the standard variation

of the entropy variation is quite stable (the fluctuation is

around 1-3 percent), even when the fluctuations of the flows

are quite big, 
25% and 
50%, respectively. Moreover, the

standard variation of entropy variation decreases when the

number of flows increases. For example, for a router with

around 500 flows, the variation is about 0.015. As pre-

viously presented by (13) and (14), if we set our discrimina-

tion threshold � to be less than 0.015, then we will create

false positive; while when we set � to be greater than 0.015,

we will create false negative.
Based on Figs. 7 and 10, we can further conclude that the

entropy variation is stable against huge flow fluctuations

and number of flows in nonattack cases. Therefore, we can

use it as a benchmark to discriminate DDoS attack flows.
We investigate the changes of entropy variation when a

DDoS attack is ongoing. We use the term attack strength to

present the packet rate of attacks. We fix the number of
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Fig. 7. The entropy variation against number of flows for Poisson and
normal distributions.

Fig. 8. Entropy variation against number of flows (sorted by traffic
volumn per connection).

Fig. 9. Entropy variation against number of flows (sorted by the number
of connections).



flows for a local router as 1,000, and among them, there is
one attack flow. We keep the packet rates of the nonattack
flows at the same level, and increase the packet rate of the
attack flow, from 1 to 600 times of the nonattack flow packet
rate. The results are shown in Fig. 11.

Fig. 11 indicates clearly that the entropy variation drops
almost linearly with the increase of attack strength.

Furthermore, in order to have a direct presentation about
the relationship between the decrease of entropy variation
and the increase of attack strength, we transformed the
results of Fig. 11 into Fig. 12.

In Fig. 10, we have learned that the standard variation of
entropy variation of nonattack flows is about 0.015, and
Fig. 12 indicates that the decrease of entropy variation is
0.02 when the attack strength is seven times of the normal
flow, in other words, we can only discriminate DDoS attack
flows when its attack strength is about seven times of the
normal flow; and we cannot further our traceback proce-
dure once the attack strength is not strong, say, less than
seven times of the legitimate flows.

The attach strength is the critical element for our
traceback mechanism, and our strategy is effective once

the attack strength is obvious from legitimate flows, for
example, at least seven times stronger. Therefore, the
proposed traceback method can deal with the majority of
DDoS attacks, e.g., packet flooding attacks. We have to
point out that our method cannot traceback to zombies
whose attack strength is less than seven times the legitimate
flows, as this may cause false negative. Another accuracy
issue for our method is the false positive, for example, flash
crowds will create false positive if we start the traceback
procedure at the victim site.

We now consider the entire attack tree and investigate the
convergence of entropy variation when a DDoS attack is
ongoing. Assume that there are 1,024 zombies in the
following simulations, and they are distributed uniformly
in terms of hops from the victim. In these simulations, we
ignore the hops with no zombies, and the most far away
zombies are 10 hops away from the victim, namely, each hop
has around 100 zombies. We examine the convergence of the
entropy variation with different attack tree structures, e.g.,
two-branch tree and three-branch tree. For each simulation,
we examine three cases, 100 flows, 500 flows, and 1,000 flows,
respectively. The results for the binary tree and three-branch
tree cases are shown in Figs. 13 and 14, respectively.

From Figs. 13 and 14, we find that the entropy variation
converges when the attack flows are aggregated to the
victim, namely, the entropy variation of a router decreases
when the router is getting closer to the victim. For example,
the entropy variation at 10 hops away from the victim is
much higher than that of router which is 2 hops away from
the victim. In general, the variation entropy decreases when
the attack flows get closer to the victim. This confirms the
conclusion of Theorem 2 of Section 4. Moreover, the entropy
variation converges faster in the three-branch attack tree
compared with that of the binary attack tree because the
attack strength is higher and concentrated in the first case.
These two simulations also demonstrate that the change of
entropy variation is related to the attack strength: higher
attack packet rates result in greater drop of entropy
variation, in other words, it is easier for our proposed IP
traceback strategy to complete its tasks.

Based on these two convergence simulations, we can
conclude that if a node in the attack tree possesses more
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Fig. 10. The standard variation of entropy variation against number of
flows with different standard variations.

Fig. 12. The relationship between the decrease of the entropy variation
and attack strength.

Fig. 11. The changes of entropy variation against strength of attacks.



child nodes, then the entropy variation converges faster. As

a result, it is easier for us to conduct the traceback procedure.
In order to estimate the overall traceback time, we

assume the same number of zombies (N ¼ 1;024) and

aforementioned parameters. The zombies are evenly dis-

tributed in 10 groups in terms of hops away from the

victim. Each of the groups can be anywhere from the victim:

from 1 hop away to 31 hops away. In the worst case, the

zombies are located evenly at the far end on the attack tree,

in other words, the 10 groups of zombies are located from

21 to 30 hops away from the victim. We simulated each case

for the binary attack tree and the three-branch attack tree,

respectively, and the results are shown in Fig. 15.
Fig. 15 shows that the total traceback time is about

25 seconds in the worst case (the most far away zombies are

30 hops away from the victim), and it is less than 20 seconds if

the most far away zombies are 23 hops away from the victim.

In [23], it was reported that their traceback time is about

20 seconds for a single attack source with maximum 23 hops

away from the victim. Based on [23], if the number of hops

between two Internet ends is 15, then the general traceback
time is around 10 seconds for the binary attack tree, and less
than 7 seconds for three-branch attack tree for our traceback
method. This simulation demonstrates that our method is
better than the previous traceback method in terms of overall
traceback time. Moreover, it is shown in [34] that the average
duration for DDoS attacks is 5-10 minutes, so that our method
can traceback to the most far away zombie effectively before
it disappears from the attacking scene.

7 SUMMARY AND FUTURE WORK

In this paper, we proposed an effective and efficient IP
traceback scheme against DDoS attacks based on entropy
variations. It is a fundamentally different traceback mechan-
ism from the currently adopted packet marking strategies.
Many of the available work on IP traceback depend on
packet marking, either probabilistic packet marking or
deterministic packet marking. Because of the vulnerability
of the Internet, the packet marking mechanism suffers a
number of serious drawbacks: lack of scalability; vulner-
ability to packet pollution from hackers and extraordinary
challenge on storage space at victims or intermediate
routers. On the other hand, the proposed method needs no
marking on packets, and therefore, avoids the inherent
shortcomings of packet marking mechanisms. It employs
the features that are out of the control of hackers to conduct
IP traceback. We observe and store short-term information
of flow entropy variations at routers. Once a DDoS attack
has been identified by the victim via detection algorithms,
the victim then initiates the pushback tracing procedure. The
traceback algorithm first identifies its upstream routers
where the attack flows came from, and then submits the
traceback requests to the related upstream routers. This
procedure continues until the most far away zombies are
identified or when it reaches the discrimination limitation of
DDoS attack flows. Extensive experiments and simulations
have been conducted, and the results demonstrate that the
proposed mechanism works very well in terms of effective-
ness and efficiency. Compared with previous works, the
proposed strategy can traceback fast in larger scale attack
networks. It can traceback to the most far away zombies
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Fig. 14. The convergence of the entropy variation on a three-branch
attack tree.

Fig. 15. The traceback time for DDoS attacks.Fig. 13. The convergence of the entropy variation on a binary attack
tree.



within 25 seconds in the worst case under the condition of

thousands of zombies. Moreover, the proposed model can

work as an independent software module with current

routing software. This makes it a feasible and easy to be

implemented solution for the current Internet.
Future work could be carried out in the following

promising directions:

1. The metric for DDoS attack flows could be further
explored. The proposed method deals with the
packet flooding type of attacks perfectly. However,
for the attacks with small number attack packet
rates, e.g., if the attack strength is less than seven
times of the strength of nonattack flows, then the
current metric cannot discriminate it. Therefore, a
metric of finer granularity is required to deal with
such situations.

2. Location estimation of attackers with partial infor-
mation. When the attack strength is less than seven
times of the normal flow packet rate, the proposed
method cannot succeed at the moment. However,
we can detect the attack with the information that we
have accumulated so far using traditional methods,
e.g., the hidden Markov chain model, or recently
developed tools, e.g., the network tomography. We
have a strong interest to explore this for the whole
attack diagram.

3. Differentiation of the DDoS attacks and flash crowds.
In this paper, we did not consider this issue—the
proposed method may treat flash crowd as a DDoS
attack, and therefore, resulting in false positive
alarms. We have a high interest to explore this issue.
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